skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nishijima, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source, which includes very high energy (VHE, $$E\gt $$ 100 GeV) $$\gamma$$-ray data taken by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov telescopes) and H.E.S.S. (High Energy Stereoscopic System) imaging Cherenkov telescopes. The discovery of VHE $$\gamma$$-ray emission happened during a high state of $$\gamma$$-ray activity in July 2016, observed by many instruments from radio to VHE $$\gamma$$-rays. We identify four states of activity of the source, one of which includes VHE $$\gamma$$-ray emission. Variability in the VHE domain is found on daily time-scales. The intrinsic VHE spectrum can be described by a power law with index $$3.27\pm 0.44_{\rm stat}\pm 0.15_{\rm sys}$$ (MAGIC) and $$3.39\pm 0.58_{\rm stat}\pm 0.64_{\rm sys}$$ (H.E.S.S.) in the energy range of 55–300 and 120–500 GeV, respectively. The broadband emission cannot be successfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the data set well and a proton-synchrotron-dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the broad-line region to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be a flat spectrum radio quasar (FSRQ), in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL Lac and FSRQ objects. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  2. Aims.Mrk 421 was in its most active state around early 2010, which led to the highest TeV gamma-ray flux ever recorded from any active galactic nuclei (AGN). We aim to characterize the multiwavelength behavior during this exceptional year for Mrk 421, and evaluate whether it is consistent with the picture derived with data from other less exceptional years. Methods.We investigated the period from November 5, 2009, (MJD 55140) until July 3, 2010, (MJD 55380) with extensive coverage from very-high-energy (VHE;E > 100 GeV) gamma rays to radio with MAGIC, VERITAS,Fermi-LAT,RXTE,Swift, GASP-WEBT, VLBA, and a variety of additional optical and radio telescopes. We characterized the variability by deriving fractional variabilities as well as power spectral densities (PSDs). In addition, we investigated images of the jet taken with VLBA and the correlation behavior among different energy bands. Results.Mrk 421 was in widely different states of activity throughout the campaign, ranging from a low-emission state to its highest VHE flux ever recorded. We find the strongest variability in X-rays and VHE gamma rays, and PSDs compatible with power-law functions with indices around 1.5. We observe strong correlations between X-rays and VHE gamma rays at zero time lag with varying characteristics depending on the exact energy band. We also report a marginally significant (∼3σ) positive correlation between high-energy (HE;E > 100 MeV) gamma rays and the ultraviolet band. We detected marginally significant (∼3σ) correlations between the HE and VHE gamma rays, and between HE gamma rays and the X-ray, that disappear when the large flare in February 2010 is excluded from the correlation study, hence indicating the exceptionality of this flaring event in comparison with the rest of the campaign. The 2010 violent activity of Mrk 421 also yielded the first ejection of features in the VLBA images of the jet of Mrk 421. Yet the large uncertainties in the ejection times of these unprecedented radio features prevent us from firmly associating them to the specific flares recorded during the 2010 campaign. We also show that the collected multi-instrument data are consistent with a scenario where the emission is dominated by two regions, a compact and extended zone, which could be considered as a simplified implementation of an energy-stratified jet as suggested by recentIXPEobservations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. The BL Lacertae object VER J0521+211 underwent a notable flaring episode in February 2020. A short-term monitoring campaign, led by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) collaboration, covering a wide energy range from radio to very high-energy (VHE, 100 GeV <E< 100 TeV) gamma rays was organised to study its evolution. These observations resulted in a consistent detection of the source over six consecutive nights in the VHE gamma-ray domain. Combining these nightly observations with an extensive set of multi-wavelength data made modelling of the blazar’s spectral energy distribution (SED) possible during the flare. This modelling was performed with a focus on two plausible emission mechanisms: (i) a leptonic two-zone synchrotron-self-Compton scenario, and (ii) a lepto-hadronic one-zone scenario. Both models effectively replicated the observed SED from radio to the VHE gamma-ray band. Furthermore, by introducing a set of evolving parameters, both models were successful in reproducing the evolution of the fluxes measured in different bands throughout the observing campaign. Notably, the lepto-hadronic model predicts enhanced photon and neutrino fluxes at ultra-high energies (E> 100 TeV). While the photon component, generated via decay of neutral pions, is not directly observable as it is subject to intense pair production (and therefore extinction) through interactions with the cosmic microwave background photons, neutrino detectors (e.g. IceCube) can probe the predicted neutrino component. Finally, the analysis of the gamma-ray spectra, observed by MAGIC and theFermi-LAT telescopes, yielded a conservative 95% confidence upper limit ofz ≤ 0.244 for the redshift of this blazar. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Context.Blazars exhibit strong variability across the entire electromagnetic spectrum, including periods of high-flux states commonly known as flares. The physical mechanisms in blazar jets responsible for flares remain poorly understood to date. Aims.Our aim is to better understand the emission mechanisms during blazar flares using X-ray polarimetry and broadband observations from the archetypical TeV blazar Mrk 421, which can be studied with higher accuracy than other blazars that are dimmer and/or located farther away. Methods.We studied a flaring activity from December 2023 that was characterized from radio to very high-energy (VHE;E > 0.1 TeV) gamma rays with MAGIC,Fermi-LAT,Swift,XMM-Newton, and several optical and radio telescopes. These observations included, for the first time for a gamma-ray flare of a blazar, simultaneous X-ray polarization measurements with IXPE, in addition to optical and radio polarimetry data. We quantify the variability and correlations among the multi-band flux and polarization measurements, and describe the varying broadband emission within a theoretical scenario constrained by the polarization data. Results.We find substantial variability in both X-rays and VHE gamma rays throughout the campaign, with the highest VHE flux above 0.2 TeV occurring during the IXPE observing window, and exceeding twice the flux of the Crab Nebula. However, the VHE and X-ray spectra are on average softer, and the correlation between these two bands is weaker than those reported in the previous flares of Mrk 421. IXPE reveals an X-ray polarization degree significantly higher than that at radio and optical frequencies, similar to previous results for Mrk 421 and other high synchrotron peaked blazars. Differently to past observations, the X-ray polarization angle varies by ∼100° on timescales of days, and the polarization degree changes by more than a factor of 4. The highest X-ray polarization degree, analyzed in 12 h time intervals, reaches 26 ± 2%, around which an X-ray counter-clockwise hysteresis loop is measured withXMM-Newton. It suggests that the X-ray emission comes from particles close to the high-energy cutoff, hence possibly probing an extreme case of the Turbulent Extreme Multi-Zone model for which the chromatic trend in the polarization may be more pronounced than theoretically predicted. We model the broadband emission with a simplified stratified jet model throughout the flare. The polarization measurements imply an electron distribution in the X-ray emitting region with a very high minimum Lorentz factor ($$ \gamma\prime_{\mathrm{min}}\gtrsim10^4 $$), which is expected in electron-ion plasma, as well as a variation of the emitting region size of up to a factor of 3 during the flaring activity. We find no correlation between the fluxes and the evolution of the model parameters, which indicates a stochastic nature of the underlying physical mechanism that likely explains the lack of a tight X-ray/VHE correlation during this flaring activity. Such behavior would be expected in a highly turbulent electron-ion plasma crossing a shock front. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. A search for proton decay into e + / μ + and a η meson has been performed using data from a 0.373 Mton · year exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear η interaction cross section, resulting in a factor of 2 reduction in uncertainties from this source and 10 % increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of 1.4 × 10 34 years for p e + η and 7.3 × 10 33 years for p μ + η at the 90% CL were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. We present the results of the charge ratio ( R ) and polarization ( P 0 μ ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be R = 1.32 ± 0.02 ( stat + syst ) at E μ cos θ Zenith = 0.7 0.2 + 0.3 TeV , where E μ is the muon energy and θ Zenith is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the π K model of 1.9 σ . We also measured the muon polarization at the production location to be P 0 μ = 0.52 ± 0.02 ( stat + syst ) at the muon momentum of 0.9 0.1 + 0.6 TeV / c at the surface of the mountain; this also suggests a tension with the Honda flux model of 1.5 σ . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near 1 TeV / c . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024 
    more » « less
  7. Abstract Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10 s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that are critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new data-acquisition (DAQ) modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit photomultiplier tubes during a supernova burst and the second, the Veto module, prescales the high-rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead-time less than 1 ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800 pc will trigger the Veto module, resulting in a prescaling of the observed neutrino data. 
    more » « less
  8. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  9. Abstract Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15Mstar within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance. 
    more » « less
  10. Aims.We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE. Methods.The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC,Fermi-LAT,NuSTAR,XMM-Newton,Swift, and several optical and radio telescopes to complement IXPE data. Results.During the IXPE exposures, the measured 0.2–1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σsignificance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2–5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, theSwift-XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation,NuSTARdata reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales. 
    more » « less